U:RDoc::NormalClass[iI" Float:ET@I" Numeric;To:RDoc::Markup::Document: @parts[o;;[: @fileI"*ext/bigdecimal/lib/bigdecimal/util.rb;T:0@omit_headings_from_table_of_contents_below0o;;[; I"lib/rexml/xpath_parser.rb;T; 0o;;[ o:RDoc::Markup::Paragraph;[I"CFloat objects represent inexact real numbers using the native ;TI"Carchitecture's double-precision floating point representation.;To:RDoc::Markup::BlankLineo; ;[I"IFloating point has a different arithmetic and is an inexact number. ;TI";So you should know its esoteric system. see following:;T@o:RDoc::Markup::List: @type: BULLET: @items[o:RDoc::Markup::ListItem: @label0;[o; ;[I":http://docs.sun.com/source/806-3568/ncg_goldberg.html;To;;0;[o; ;[I"Whttp://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise;To;;0;[o; ;[I"Bhttp://en.wikipedia.org/wiki/Floating_point#Accuracy_problems;T; I"numeric.c;T; 0; 0; 0[[U:RDoc::Constant[iI" ROUNDS;TI"Float::ROUNDS;T00o;;[ o; ;[I">Represents the rounding mode for floating point addition.;T@o; ;[I";Usually defaults to 1, rounding to the nearest number.;T@o; ;[I"Other modes include:;T@o; ;: NOTE;[ o;;[I"-1;T;[o; ;[I"Indeterminable;To;;[I"0;T;[o; ;[I"Rounding towards zero;To;;[I"1;T;[o; ;[I"#Rounding to the nearest number;To;;[I"2;T;[o; ;[I"'Rounding towards positive infinity;To;;[I"3;T;[o; ;[I"'Rounding towards negative infinity;T; @-; 0@-@cRDoc::NormalClass0U;[iI" RADIX;TI"Float::RADIX;T00o;;[o; ;[I"HThe base of the floating point, or number of unique digits used to ;TI"represent the number.;T@o; ;[I"TUsually defaults to 2 on most systems, which would represent a base-10 decimal.;T; @-; 0@-@@d0U;[iI" MANT_DIG;TI"Float::MANT_DIG;T00o;;[o; ;[I":The number of base digits for the +double+ data type.;T@o; ;[I"Usually defaults to 53.;T; @-; 0@-@@d0U;[iI"DIG;TI"Float::DIG;T00o;;[o; ;[I"LThe minimum number of significant decimal digits in a double-precision ;TI"floating point.;T@o; ;[I"Usually defaults to 15.;T; @-; 0@-@@d0U;[iI" MIN_EXP;TI"Float::MIN_EXP;T00o;;[o; ;[I"HThe smallest posable exponent value in a double-precision floating ;TI" point.;T@o; ;[I"Usually defaults to -1021.;T; @-; 0@-@@d0U;[iI" MAX_EXP;TI"Float::MAX_EXP;T00o;;[o; ;[I"HThe largest possible exponent value in a double-precision floating ;TI" point.;T@o; ;[I"Usually defaults to 1024.;T; @-; 0@-@@d0U;[iI"MIN_10_EXP;TI"Float::MIN_10_EXP;T00o;;[o; ;[I"IThe smallest negative exponent in a double-precision floating point ;TI"+where 10 raised to this power minus 1.;T@o; ;[I"Usually defaults to -307.;T; @-; 0@-@@d0U;[iI"MAX_10_EXP;TI"Float::MAX_10_EXP;T00o;;[o; ;[I"NThe largest positive exponent in a double-precision floating point where ;TI"%10 raised to this power minus 1.;T@o; ;[I"Usually defaults to 308.;T; @-; 0@-@@d0U;[iI"MIN;TI"Float::MIN;T00o;;[ o; ;[I"RThe smallest positive normalized number in a double-precision floating point.;T@o; ;[I"1Usually defaults to 2.2250738585072014e-308.;T@o; ;[ I"4If the platform supports denormalized numbers, ;TI"4there are numbers between zero and Float::MIN. ;TI"H0.0.next_float returns the smallest positive floating point number ;TI"$including denormalized numbers.;T; @-; 0@-@@d0U;[iI"MAX;TI"Float::MAX;T00o;;[o; ;[I"NThe largest possible integer in a double-precision floating point number.;T@o; ;[I"1Usually defaults to 1.7976931348623157e+308.;T; @-; 0@-@@d0U;[iI" EPSILON;TI"Float::EPSILON;T00o;;[o; ;[I"IThe difference between 1 and the smallest double-precision floating ;TI"!point number greater than 1.;T@o; ;[I"0Usually defaults to 2.2204460492503131e-16.;T; @-; 0@-@@d0U;[iI" INFINITY;TI"Float::INFINITY;T00o;;[o; ;[I"2An expression representing positive infinity.;T; @-; 0@-@@d0U;[iI"NAN;TI"Float::NAN;T00o;;[o; ;[I"@An expression representing a value which is "not a number".;T; @-; 0@-@@d0[[[I" class;T[[: public[[:protected[[: private[[I" instance;T[[;[6[I"%;TI"numeric.c;T[I"*;T@ [I"**;T@ [I"+;T@ [I"-;T@ [I"-@;T@ [I"/;T@ [I"<;T@ [I"<=;T@ [I"<=>;T@ [I"==;T@ [I"===;T@ [I">;T@ [I">=;T@ [I"abs;T@ [I" angle;TI"complex.c;T[I"arg;T@([I" ceil;T@ [I" coerce;T@ [I" dclone;FI"lib/rexml/xpath_parser.rb;T[I"denominator;TI"rational.c;T[I" divmod;T@ [I" eql?;T@ [I" fdiv;T@ [I" finite?;T@ [I" floor;T@ [I" hash;T@ [I"infinite?;T@ [I" inspect;T@ [I"magnitude;T@ [I" modulo;T@ [I" nan?;T@ [I"negative?;T@ [I"next_float;T@ [I"numerator;T@4[I" phase;T@([I"positive?;T@ [I"prev_float;T@ [I"quo;T@ [I"rationalize;T@4[I" round;T@ [I" to_d;FI"*ext/bigdecimal/lib/bigdecimal/util.rb;T[I" to_f;T@ [I" to_i;T@ [I" to_int;T@ [I" to_r;T@4[I" to_s;T@ [I" truncate;T@ [I" zero?;T@ [;[[;[[[U:RDoc::Context::Section[i0o;;[; 0; 0[ I"complex.c;T@ I"*ext/psych/lib/psych/scalar_scanner.rb;TI"+lib/matrix/eigenvalue_decomposition.rb;TI"lib/prime.rb;T@@-I"rational.c;T@}cRDoc::TopLevel