.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "ASN1_generate_nconf 3" .TH ASN1_generate_nconf 3 "2019-12-20" "1.0.2u" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" ASN1_generate_nconf, ASN1_generate_v3 \- ASN1 generation functions .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include \& \& ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf); \& ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" These functions generate the \s-1ASN1\s0 encoding of a string in an \fB\s-1ASN1_TYPE\s0\fR structure. .PP \&\fBstr\fR contains the string to encode \fBnconf\fR or \fBcnf\fR contains the optional configuration information where additional strings will be read from. \fBnconf\fR will typically come from a config file wherease \fBcnf\fR is obtained from an \fBX509V3_CTX\fR structure which will typically be used by X509 v3 certificate extension functions. \fBcnf\fR or \fBnconf\fR can be set to \fB\s-1NULL\s0\fR if no additional configuration will be used. .SH "GENERATION STRING FORMAT" .IX Header "GENERATION STRING FORMAT" The actual data encoded is determined by the string \fBstr\fR and the configuration information. The general format of the string is: .IP "\fB[modifier,]type[:value]\fR" 2 .IX Item "[modifier,]type[:value]" .PP That is zero or more comma separated modifiers followed by a type followed by an optional colon and a value. The formats of \fBtype\fR, \&\fBvalue\fR and \fBmodifier\fR are explained below. .SS "\s-1SUPPORTED TYPES\s0" .IX Subsection "SUPPORTED TYPES" The supported types are listed below. Unless otherwise specified only the \fB\s-1ASCII\s0\fR format is permissible. .IP "\fB\s-1BOOLEAN\s0\fR, \fB\s-1BOOL\s0\fR" 2 .IX Item "BOOLEAN, BOOL" This encodes a boolean type. The \fBvalue\fR string is mandatory and should be \fB\s-1TRUE\s0\fR or \fB\s-1FALSE\s0\fR. Additionally \fB\s-1TRUE\s0\fR, \fBtrue\fR, \fBY\fR, \&\fBy\fR, \fB\s-1YES\s0\fR, \fByes\fR, \fB\s-1FALSE\s0\fR, \fBfalse\fR, \fBN\fR, \fBn\fR, \fB\s-1NO\s0\fR and \fBno\fR are acceptable. .IP "\fB\s-1NULL\s0\fR" 2 .IX Item "NULL" Encode the \fB\s-1NULL\s0\fR type, the \fBvalue\fR string must not be present. .IP "\fB\s-1INTEGER\s0\fR, \fB\s-1INT\s0\fR" 2 .IX Item "INTEGER, INT" Encodes an \s-1ASN1 \s0\fB\s-1INTEGER\s0\fR type. The \fBvalue\fR string represents the value of the integer, it can be prefaced by a minus sign and is normally interpreted as a decimal value unless the prefix \fB0x\fR is included. .IP "\fB\s-1ENUMERATED\s0\fR, \fB\s-1ENUM\s0\fR" 2 .IX Item "ENUMERATED, ENUM" Encodes the \s-1ASN1 \s0\fB\s-1ENUMERATED\s0\fR type, it is otherwise identical to \&\fB\s-1INTEGER\s0\fR. .IP "\fB\s-1OBJECT\s0\fR, \fB\s-1OID\s0\fR" 2 .IX Item "OBJECT, OID" Encodes an \s-1ASN1 \s0\fB\s-1OBJECT IDENTIFIER\s0\fR, the \fBvalue\fR string can be a short name, a long name or numerical format. .IP "\fB\s-1UTCTIME\s0\fR, \fB\s-1UTC\s0\fR" 2 .IX Item "UTCTIME, UTC" Encodes an \s-1ASN1 \s0\fBUTCTime\fR structure, the value should be in the format \fB\s-1YYMMDDHHMMSSZ\s0\fR. .IP "\fB\s-1GENERALIZEDTIME\s0\fR, \fB\s-1GENTIME\s0\fR" 2 .IX Item "GENERALIZEDTIME, GENTIME" Encodes an \s-1ASN1 \s0\fBGeneralizedTime\fR structure, the value should be in the format \fB\s-1YYYYMMDDHHMMSSZ\s0\fR. .IP "\fB\s-1OCTETSTRING\s0\fR, \fB\s-1OCT\s0\fR" 2 .IX Item "OCTETSTRING, OCT" Encodes an \s-1ASN1 \s0\fB\s-1OCTET STRING\s0\fR. \fBvalue\fR represents the contents of this structure, the format strings \fB\s-1ASCII\s0\fR and \fB\s-1HEX\s0\fR can be used to specify the format of \fBvalue\fR. .IP "\fB\s-1BITSTRING\s0\fR, \fB\s-1BITSTR\s0\fR" 2 .IX Item "BITSTRING, BITSTR" Encodes an \s-1ASN1 \s0\fB\s-1BIT STRING\s0\fR. \fBvalue\fR represents the contents of this structure, the format strings \fB\s-1ASCII\s0\fR, \fB\s-1HEX\s0\fR and \fB\s-1BITLIST\s0\fR can be used to specify the format of \fBvalue\fR. .Sp If the format is anything other than \fB\s-1BITLIST\s0\fR the number of unused bits is set to zero. .IP "\fB\s-1UNIVERSALSTRING\s0\fR, \fB\s-1UNIV\s0\fR, \fB\s-1IA5\s0\fR, \fB\s-1IA5STRING\s0\fR, \fB\s-1UTF8\s0\fR, \fBUTF8String\fR, \fB\s-1BMP\s0\fR, \fB\s-1BMPSTRING\s0\fR, \fB\s-1VISIBLESTRING\s0\fR, \fB\s-1VISIBLE\s0\fR, \fB\s-1PRINTABLESTRING\s0\fR, \fB\s-1PRINTABLE\s0\fR, \fBT61\fR, \fBT61STRING\fR, \fB\s-1TELETEXSTRING\s0\fR, \fBGeneralString\fR, \fB\s-1NUMERICSTRING\s0\fR, \fB\s-1NUMERIC\s0\fR" 2 .IX Item "UNIVERSALSTRING, UNIV, IA5, IA5STRING, UTF8, UTF8String, BMP, BMPSTRING, VISIBLESTRING, VISIBLE, PRINTABLESTRING, PRINTABLE, T61, T61STRING, TELETEXSTRING, GeneralString, NUMERICSTRING, NUMERIC" These encode the corresponding string types. \fBvalue\fR represents the contents of this structure. The format can be \fB\s-1ASCII\s0\fR or \fB\s-1UTF8\s0\fR. .IP "\fB\s-1SEQUENCE\s0\fR, \fB\s-1SEQ\s0\fR, \fB\s-1SET\s0\fR" 2 .IX Item "SEQUENCE, SEQ, SET" Formats the result as an \s-1ASN1 \s0\fB\s-1SEQUENCE\s0\fR or \fB\s-1SET\s0\fR type. \fBvalue\fR should be a section name which will contain the contents. The field names in the section are ignored and the values are in the generated string format. If \fBvalue\fR is absent then an empty \s-1SEQUENCE\s0 will be encoded. .SS "\s-1MODIFIERS\s0" .IX Subsection "MODIFIERS" Modifiers affect the following structure, they can be used to add \s-1EXPLICIT\s0 or \s-1IMPLICIT\s0 tagging, add wrappers or to change the string format of the final type and value. The supported formats are documented below. .IP "\fB\s-1EXPLICIT\s0\fR, \fB\s-1EXP\s0\fR" 2 .IX Item "EXPLICIT, EXP" Add an explicit tag to the following structure. This string should be followed by a colon and the tag value to use as a decimal value. .Sp By following the number with \fBU\fR, \fBA\fR, \fBP\fR or \fBC\fR \s-1UNIVERSAL, APPLICATION, PRIVATE\s0 or \s-1CONTEXT SPECIFIC\s0 tagging can be used, the default is \s-1CONTEXT SPECIFIC.\s0 .IP "\fB\s-1IMPLICIT\s0\fR, \fB\s-1IMP\s0\fR" 2 .IX Item "IMPLICIT, IMP" This is the same as \fB\s-1EXPLICIT\s0\fR except \s-1IMPLICIT\s0 tagging is used instead. .IP "\fB\s-1OCTWRAP\s0\fR, \fB\s-1SEQWRAP\s0\fR, \fB\s-1SETWRAP\s0\fR, \fB\s-1BITWRAP\s0\fR" 2 .IX Item "OCTWRAP, SEQWRAP, SETWRAP, BITWRAP" The following structure is surrounded by an \s-1OCTET STRING,\s0 a \s-1SEQUENCE,\s0 a \s-1SET\s0 or a \s-1BIT STRING\s0 respectively. For a \s-1BIT STRING\s0 the number of unused bits is set to zero. .IP "\fB\s-1FORMAT\s0\fR" 2 .IX Item "FORMAT" This specifies the format of the ultimate value. It should be followed by a colon and one of the strings \fB\s-1ASCII\s0\fR, \fB\s-1UTF8\s0\fR, \fB\s-1HEX\s0\fR or \fB\s-1BITLIST\s0\fR. .Sp If no format specifier is included then \fB\s-1ASCII\s0\fR is used. If \fB\s-1UTF8\s0\fR is specified then the value string must be a valid \fB\s-1UTF8\s0\fR string. For \fB\s-1HEX\s0\fR the output must be a set of hex digits. \fB\s-1BITLIST\s0\fR (which is only valid for a \s-1BIT STRING\s0) is a comma separated list of the indices of the set bits, all other bits are zero. .SH "EXAMPLES" .IX Header "EXAMPLES" A simple IA5String: .PP .Vb 1 \& IA5STRING:Hello World .Ve .PP An IA5String explicitly tagged: .PP .Vb 1 \& EXPLICIT:0,IA5STRING:Hello World .Ve .PP An IA5String explicitly tagged using \s-1APPLICATION\s0 tagging: .PP .Vb 1 \& EXPLICIT:0A,IA5STRING:Hello World .Ve .PP A \s-1BITSTRING\s0 with bits 1 and 5 set and all others zero: .PP .Vb 1 \& FORMAT:BITLIST,BITSTRING:1,5 .Ve .PP A more complex example using a config file to produce a \&\s-1SEQUENCE\s0 consiting of a \s-1BOOL\s0 an \s-1OID\s0 and a UTF8String: .PP .Vb 1 \& asn1 = SEQUENCE:seq_section \& \& [seq_section] \& \& field1 = BOOLEAN:TRUE \& field2 = OID:commonName \& field3 = UTF8:Third field .Ve .PP This example produces an RSAPrivateKey structure, this is the key contained in the file client.pem in all OpenSSL distributions (note: the field names such as 'coeff' are ignored and are present just for clarity): .PP .Vb 3 \& asn1=SEQUENCE:private_key \& [private_key] \& version=INTEGER:0 \& \& n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e \& D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9 \& \& e=INTEGER:0x010001 \& \& d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\e \& F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D \& \& p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\e \& D4BD57 \& \& q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\e \& 46EC4F \& \& exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\e \& 9C0A39B9 \& \& exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\e \& E7B2458F \& \& coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\e \& 628657053A .Ve .PP This example is the corresponding public key in a SubjectPublicKeyInfo structure: .PP .Vb 2 \& # Start with a SEQUENCE \& asn1=SEQUENCE:pubkeyinfo \& \& # pubkeyinfo contains an algorithm identifier and the public key wrapped \& # in a BIT STRING \& [pubkeyinfo] \& algorithm=SEQUENCE:rsa_alg \& pubkey=BITWRAP,SEQUENCE:rsapubkey \& \& # algorithm ID for RSA is just an OID and a NULL \& [rsa_alg] \& algorithm=OID:rsaEncryption \& parameter=NULL \& \& # Actual public key: modulus and exponent \& [rsapubkey] \& n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e \& D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9 \& \& e=INTEGER:0x010001 .Ve .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIASN1_generate_nconf()\fR and \fIASN1_generate_v3()\fR return the encoded data as an \fB\s-1ASN1_TYPE\s0\fR structure or \fB\s-1NULL\s0\fR if an error occurred. .PP The error codes that can be obtained by \fIERR_get_error\fR\|(3). .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fIERR_get_error\fR\|(3) .SH "HISTORY" .IX Header "HISTORY" \&\fIASN1_generate_nconf()\fR and \fIASN1_generate_v3()\fR were added to OpenSSL 0.9.8